
jpf-concurrent: An extension of Java PathFinder for
java.util.concurrent

Mateusz Ujma
Department of Computer Science,

University of Oxford
Oxford, United Kingdom

Email: mateusz.ujma@cs.ox.ac.uk

Nastaran Shafiei
Department of Computer Science
and Engineering, York University

Toronto, Ontario, Canada
Email: nastaran@cse.yorku.ca

Abstract—One of the main challenges when verifying multi-
threaded Java applications is the state space explosion problem.
Due to thread interleavings, the number of states that the
model checker has to verify can grow rapidly and impede the
feasibility of verification. In the Java language, the source of
thread interleavings can be the system under test as well as the
Java Development Kit (JDK) itself. In our paper, we propose
a method to minimize the state space explosion problem for
applications verified under the Java PathFinder (JPF) model
checker. Our method is based on abstracting the state of the
application to a smaller domain and implementing application
behavior using the Model Java Interface (MJI) of JPF. To show
the capabilities of our approach, we have created a JPF extension
called jpf-concurrent which abstracts classes from the Java
Concurrency Utilities. Several benchmarks proved the usefulness
of our approach. In all cases, our implementation was faster
than the JDK implementation when running under the JPF
model checker. Moreover, our implementation led to significantly
smaller state spaces.

I. INTRODUCTION

The state space explosion problem is known as one of the
most challenging issues in model checking [4], [3]. One of
the sources of this problem is thread non-determinism. In
programs that include thread non-determinism, the concurrent
actions can be executed in any order. In such programs, con-
sidering all possible interleavings of these concurrent actions
can lead to a very large state space that cannot be stored in
the available memory resources or processed in reasonable
time. It can be shown that the number of program states
can increase exponentially with the number of concurrently
running components [3].

Java PathFinder (JPF) [10] is an explicit-state model checker
that directly works with Java bytecode instructions. The core
of JPF is a Java Virtual Machine (JVM) which systematically
executes Java programs by exploring all possible thread inter-
leavings. Each execution is a sequence of transitions and each
transition is a sequence of bytecode instructions that takes the
system from one state to another. While JPF is executing the
program, it explores the program state space. JPF, as any other
model checker, suffers from the state space explosion problem.

Java applications use the JDK to simplify the development
process. For concurrent applications the JDK provides Concur-
rency Utilities (java.util.concurrent package) which
contains implementations of basic concurrency constructs. As

JPF is mostly used to verify multi-threaded code, a large
number of applications verified under JPF use classes from
Java Concurrency Utilities. Verifying Java programs which
are based on Java Concurrency Utilities gives rise to several
challenges. In general, due to thread non-determinism orig-
inated from many constructs included in Java Concurrency
Utilities, model checking such Java programs leads to very
large state spaces. Another challenge is compatibility issues
between different JRE/JDK vendors. To improve performance
a large number of vendors use private classes to implement
java.util.concurrent package. These classes tend to
contain native methods, the implementation of which is tied
to a specific JVM. To run such code JPF would have to
handle these native methods for each JVM vendor. This
has not been done, and in many cases running code that
uses classes from Java Concurrency Utilities triggers an
UnsatisfiedLinkError error. Finally, unreadable stack
traces is another issue which is due to the size of the Java
Concurrency Utilities and the number of method calls that are
kept on the stack.

To solve the above issues, we have created the jpf-
concurrent extension for JPF. In this extension, model classes
are created as replacements for the classes included in the Java
Concurrency Utilities. The size of the state space is reduced by
abstracting the state of the Java Concurrency Utilities classes
to a single integer declared within their corresponding model
classes. Moreover, the MJI feature of JPF is used to delegate
most of the implementation of concurrent classes to the host
JVM level where it is not model checked. Using this technique,
we keep the complex state of the concurrent objects on the host
JVM, and JPF uses an integer to represent different states.
Native method compatibility problems have been solved by
reimplementing most of the Java Concurrency Utilities classes
without using any vendor specific code. Our solution also
shortened the size of the stack traces considerably.

The rest of this paper is organized as follows. In Section
II we discuss related work and existing solutions. Section
III presents an example of how jpf-concurrent can be used
for software verification. In Section IV the reader can find
detailed description of jpf-concurrent implementation. Section
V contains quantitative results of running the benchmarks.
Finally, we outline future work in Section VI.

II. RELATED WORK

There exist several programming interfaces within JPF
that can be used to solve the presented issues. To provide
implementation for unsupported native methods and reduce
the state space JPF contains Model Java Interface (MJI). In
resemblance to Java Native Interface (JNI), which is used
to transfer the execution from the Java level to the native
level, MJI is used to transfer the execution from JPF to the
host JVM. All methods that execute on the host JVM using
MJI are atomic, therefore, they do not contribute to the state
space explosion problem. In the cases where a method has
to be executed on the JPF level, in order to avoid thread
reschedulings, we can use the class gov.nasa.jpf.jvm.
Verify. This class includes the methods beginAtomic()
and endAtomic(). All the bytecode instructions surrounded
by these two methods are combined into a single transition.
Reducing the stack traces can be achieved by means of a lis-
tener. Such a listener could extend the ListenerAdapter
class and implement the propertyViolated() method to
access and augment the current stack trace. To the best of
our knowledge, before jpf-concurrent there was no work that
would provide a coherent usage of these techniques that would
allow state abstraction on the JPF level and state handling on
the host VM level. There are a few other JPF extensions that
reimplement JDK libraries to allow verification. jpf-awt [9]
focuses on AWT/Swing libraries and uses MJI to reimplement
EventDispatchThread where it reads UI scripts that are
used as drivers for the verification process. Another extension
is net-iocache [2], [1] which allows verification of networking
applications in the presence of backtracking. Unfortunately,
because of unique characteristics of GUI and networking
applications none of these techniques can be directly applied
to Java Concurrency Utilities.

III. EXAMPLE

In this section, we use a simple example to explain how the
jpf-concurrent extension can be used to verify Java programs.
As jpf-concurrent is an extension to JPF, we assume that a
fully functional copy of JPF is available. The first step to
use our extension is to download it from the jpf-concurrent
project website 1. The next step is to specify a directory where
jpf-concurrent can be found in the site.properties file.
From this point in *.jpf files, we can use the @using
keyword to enable jpf-concurrent for a given target application.
The classes modelled within jpf-concurrent follow the same
API as their corresponding classes in the Java Concurrency
Utilities. Therefore, running JPF with jpf-concurrent enabled
does not affect the verification results, i.e., the output produced
by JPF with jpf-concurrent will not be different from the
output when running it without jpf-concurrent. The only way
that using jpf-concurrent affects the verification is the decrease
of verification time and support for native calls within classes
of Java Concurrency Utilities.

1http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-concurrent

The content of ReentrantLockPerformanceTest.jpf
file which is used for running one of the jpf-concurrent
benchmarks is shown in Figure 1. Figure 2 contains output
of a successful verification.

mode property file for running

JPF on ReentrantLockPerformanceTest example

@using jpf-concurrent

target = ReentrantLockPerformanceTest

Fig. 1. ReentrantLockPerformanceTest.jpf

./jpf ReentrantLockPerformanceTest.jpf 4

JavaPathfinder v6.0 - (C) RIACS/NASA Ames Research Center

======================================= system under test

application: ReentrantLockPerformanceTest.java
arguments: 4

========================= search started: 8/21/11 4:55 PM

***** ReentrantLock PERFORMANCE TEST *****

Number of threads = 4

=== results

no errors detected

== statistics

elapsed time: 0:00:05
states: new=18762, visited=36606,

backtracked=55367, end=107
search: maxDepth=35, constraints hit=0
choice generators: thread=18761 (signal=0, lock=2,

shared ref=5727), data=0
heap: new=9818, released=131340,

max live=370, gc-cycles=51600
instructions: 769878
max memory: 482MB
loaded code: classes=82, methods=1382

======================== search finished: 8/21/11 4:55 PM

Fig. 2. Running one of jpf-concurrent benchmarks

IV. TOOL DESCRIPTION

Java PathFinder Features

JPF can be considered as a JVM that executes the Java code
under test. JPF itself is written in Java, and therefore, it runs
on top of another JVM, called the host JVM. Figure 3 shows
the different layers involved while JPF is running on target
code.

One of the key features of JPF are its model classes. These
classes are considered as part of the code under test which
is model checked by JPF. Model classes are replacements for
Java classes. By implementing a model class corresponding to
a certain target class, we can force JPF to not model check
the original class, but instead model check the model class as
an alternative.

Another key feature of JPF is its MJI. The implementation
of MJI is based on classes called native peers. These classes
run on top of the host JVM, and they are not model checked

Target Application

JPF

Host JVM

Operating System

Fig. 3. Different layers involved in JPF execution

by JPF. JPF uses a special name pattern to associate a native
peer class to a class of the target code. It also establishes a cor-
respondence between the methods of these classes. Whenever
JPF gets to a method that is associated with a corresponding
method in the native peer, the execution is transferred to the
host JVM. The host JVM executes the body of the native
peer method, and after the native peer method returns, JPF
continues model checking the rest of the code.

Java Concurrency Utilities

The Java platform was originally designed to support con-
current programming. Before Java 1.5, the concurrent pro-
gramming was possible through low-level concurrency prim-
itives (e.g. synchronized, wait, notify) included in
the Java language [7]. The Java Concurrency Utilities [5] are
included in the Java platform since version 1.5. These utilities
add high-level building blocks for creating concurrent classes
and applications. Using such well-tested building blocks can
avoid potential concurrency bugs such as race conditions,
deadlocks, and thread starvation.

Based on the functionality, the Java Concurrency Utilities
can be divided into different parts. The following is a de-
scription of those parts that have been modelled by the jpf-
concurrent project.

• Concurrent Collections: the java.util.
concurrent package contains a number
of concurrent data structure implementa-
tions, such as ConcurrentHashMap or
ConcurrentLinkedQueue. Implementations of
these collections guarantee that an action that adds
an element to the collection has a happens-before
relationship [8] with subsequent actions that remove
or access that element. Such behavior avoids memory
consistency errors.

• Synchronizers: the java.util.concurrent pack-
age also includes classes that provide commonly-
used synchronization idioms, such as Semaphore or
Exchanger.

• Locks: the java.util.concurrent.locks pack-
age implements a high-performance locking discipline
which eliminates some of the limitations of the implicit
locks used by synchronized code.

• Atomic Variables: the java.util.concurrent.
atomic package contains classes that manipulate vari-
ables atomically. These classes implement the method
compareAndSet which provides a conditional atomic
update on a specified variable, similar to compare and
swap (CAS) [6]. Similar to volatile variables, the
atomic variables guarantee that a write to the variable has
a happens-before relationship with the subsequent read of
the same variable.

Implementation

In our approach, the major part of the implementation that
emulates the behavior of concurrency classes is not model
checked, but runs on top of the host JVM. This design is
mainly based on the MJI feature of JPF which is used to
delegate the calls from Java Concurrency Utilities to the
methods that execute at the host JVM level. The actual objects
that represent instances of concurrent classes are created and
maintained at the host JVM level. The majority of operations
on these instances are also performed at the host JVM level.

To reduce the state space of the code, our approach abstracts
the states of concurrent objects in the JPF environment, and
keeps their actual state in the host JVM. In other words, for
each concurrent object there exist two different constructs. One
is an abstraction of the object which has a considerably smaller
state size, and it is created in the JPF environment. The other
represents the actual state of the object, and it is created in
the host JVM environment.

To abstract the state of concurrent objects within JPF, our
solution introduces model classes that correspond to the Java
Concurrency Utilities classes. These model classes have only
one private field which is called version and is declared as
integer variable . From now on, in this paper, we refer to these
abstract model classes as JPF-level model classes. Instances
of these classes represent the concurrent objects in the JPF
environment. Using a single integer to capture a state rather
than a complex data structure decreases the state space size
considerably.

Consider the class ConcurrentHashMap which declares
three fields to store the content of a map. By adding a new
element to an instance of ConcurrentHashMap, the values
of these three fields are modified. Moreover, a concurrent
access to the values of these fields leads to thread rescheduling
and increases the state space. Abstracting these fields with a
single integer can considerably decrease thread rescheduling.
That does not change the class API as all mentioned fields are
private.

In our approach, methods invoked on the concurrent objects
in JPF are delegated to the methods in the host JVM that
have access to the actual state of these objects. To implement
these methods, we created a class in the host JVM level which
is completely unknown to JPF. This class is called Model.
For each concurrent class modelled in jpf-concurrent, there
exists a subclass of the class Model, which implements the
actual operations of the concurrent class. From now on, in
this paper, we refer to the subclasses of Model as JVM-level

// JFP-level model class
public class ConcurrentHashMap {
 // version represents the state
 private int version = 0;
 ...

 public native void clear();
 ...

}

// native peer
public class JPF_java_util_concurrent_ConcurrentHashMap {
 ...
 public static void clear____V(MJIEnv env, int objRef) {
 ConcurrentHashMap.getConcurrentHashMap(...).clear();
 }
 ...
} // JVM-level model class

public class ConcurrentHashMap extends Model {
 ...
 public void clear() {

 getCurrentVersion().getMap().clear();
 // updating the current version
 saveVersion();
 }
 ...
}

// subclass of Version
public class ConcurrentHashMapVersion extends Version {

 private ConcurrentHashMap<...> map = new

 ConcurrentHashMap<...>();

 public void getMap() {return map;}
 ...
}

// system under test
public void main(String[] args) {

 ConcurrentHashMap<...> map = new

 ConcurrentHashMap<...>();
 ...

 map.clear();
}

Fig. 4. Transfering execution from JPF to the host JVM

model classes. The methods of the JVM-level model classes
operate on the actual states of concurrent objects in the host
JVM. Therefore, JPF does not associate any transitions to their
execution. That reduces the number of interleavings explored
by the model checker which results in a smaller state space.

In order to transfer the execution from the JPF-level model
classes to the JVM-level model classes, we use the MJI feature
of JPF. For each JPF-level model class, that represents a class
from the Java Concurrency Utilities in JPF, jpf-concurrent
includes its corresponding native peer. Any method in the JPF-
level model class that can be hidden from JPF is declared as
native, and its corresponding method is included in the native
peer. Deciding which methods can be declared as native is
left to the programmer. In most cases all methods can be
declared native. However, there are some methods that are
hard to implement on the host JVM level.

The reason is that the way that objects are represented
in JPF is completely different from the their representation
in the host JVM. JPF uses the class ElementInfo to
capture objects and each object is represented by a unique
integer which is a reference to the heap allocation. For
example, for the case of ConcurrentHashMap<K, V>, in
our approach, the actual state of an instance of this class is
stored in an instance of ConcurrentHashMap<Integer,
Integer>. Consider the method get(Object key) of
ConcurrentHashMap. According to the Java standard API,
this method returns the value to which the specified key is
mapped. More formally, if this map contains a mapping from

a key k to a value v such that key.equals(k), then this
method returns v. Implementing this method at the JVM level
is hard, since the given key and the content of the map are all
integers representing JPF objects and the actual JVM objects
do not exist at this level.

In general, in our approach, the native peer methods play the
role as connectors between the methods of the JPF-level model
classes and the methods of the JVM-level model classes. That
can be seen from the delegation pattern demonstrated in Figure
4 for the class ConcurrentHashMap . It should be noted
that for the cases where a concurrent class method cannot
be declared as native, our approach implements the method
within the JPF-level model class. To reduce the state space,
the body of the method is surrounded between the methods
beginAtomic() and endAtomic() of the gov.nasa.
jpf.jvm.Verify class, which makes the method execution
atomic. It needs to be noted that code between these methods
cannot use any thread blocking operations.

In order to capture the actual state of the concur-
rent object, we introduced a class called Version. Sim-
ilar to the JVM-level model classes for each class repre-
senting a concurrent class, there exists a subclass of the
Version class. These classes are completely unknown to
JPF and they run on top of the host JVM. For exam-
ple, for the case of a ConcurrentHashMap we have
ConcurrentHashMapVersion, which stores the actual
map entries for objects created on the JPF level.

For each concurrent object, there is an instance of the

currentVersion: Version
versionManager: VersionManager
referenceToModel: Map<Integer, Model>

Model

versionMap: Map<Integer, Version>
VersionManager

id: int
Version

Fig. 5. UML diagram that demonstrates the relationship between main classes of the jpf-concurrent extension

JVM-level model class. To associate instances of the JPF-
level model classes, that represent concurrent objects in JPF,
to instances of JVM-level model classes, that represent con-
current objects in the host JVM , each JVM-level model class
contains a static map. This map associates the references of
the JPF-level model class to their corresponding JVM-level
model classes. This mapping is then used in native peers to
retrieve the instance of the correct JVM-level model class.

To each concurrent object, many instances of Version can
be associated. Each Version instance represents a state of
the concurrent object that can change during the execution.
In JPF-level model classes we have integer field version
which is used to map current state of the object to Version
instances on host VM level. To store and update the Version
instances corresponding to each concurrent object, the class
VersionManager is introduced, Whenever the state of
the concurrent object changes as a result of an operation,
VersionManager creates a new Version object, which
stores the updated state and updates version variable in
JPF-level model class to reflect new version of the object.
The UML diagram in Figure 5 demonstrates the relationship
between the classes mentioned above.

Object Removal Process

The main problem of our approach is that only the objects
created on the JPF level can be garbage collected automati-
cally. There is a need for a mechanism to perform the garbage
collection on the host JVM level as well. Consider the code
snippet from Figure 6.

for(int i=0; i<n; i++)
{

Semaphore s = new Semaphore();
//interim computation
s = null;

}

Fig. 6. Example of a memory leak in jpf-concurrent

By executing this code, due to s = null, instances of
the JPF-level model class that correspond to the Semaphore
objects are created in the JPF level, and they are immedi-
ately garbage collected. However, on the host JVM level,

n instances of a JVM-level model class that correspond
to Semaphore objects are created without being garbage
collected. Therefore, on the host JVM level, useless objects
that correspond to the garbage collected Semaphore objects
are still occupying the memory.

To avoid this problem, jpf-concurrent implements a lis-
tener called ObjectRemovalListener. This listener
is used to remove the instances of the JVM-level
model classes whose corresponding JPF objects have been
garbage collected. Every time JPF disposes an object,
it sends a notification to ObjectRemovalListener.
ObjectRemovalListener first checks if the class of the
object is a concurrent class modelled within jpf-concurrent. If
so, it gets rid of an instance of a JVM-level model class that
corresponds to the garbage collected object.

V. BENCHMARKS

All benchmarks have been performed on a Dell
PowerEdge R410 machine, with 32GB of RAM, 6
Xeon processors running Fedora 14. Each run has been
repeated 10 times. Three classes have been used for
benchmarking, ReentrantLockPerformanceTest,
ConcurrentHashMapPerformanceTest, and
AtomicIntegerPerformanceTest. All of these
classes can be found in the jpf-concurrent website 2. Results
have been summarized in Table I.

We have used these classes to show the most promi-
nent types of concurrency constructs that can be found
in Java Concurrency Utilities. ReentrantLock represents
classes that heavily depend on thread blocking instructions.
ConcurrentHashMap is an example of a data structure
that tries to avoid thread blocking in all feasible cases.
Finally, AtomicInteger represents all classes that use CAS
operations [6] to achieve atomicity of instructions.

In all cases, jpf-concurrent shows a speedup. The
speedup for the ReentrantLock is much higher than
for ConcurrentHashMap and AtomicInteger. This is
caused by the fact that using native methods allows us to use
fewer thread-blocking operations which are the main source of

2http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-concurrent

TABLE I
BENCHMARKS OF JPF-CONCURRENT

Class(Threads) Without jpf-concurrent With jpf-concurrent

States Time Standard deviation States Time Standard deviation

ReentrantLock(5) 620,932 00:03:49 00:00:08 176,775 00:00:47 00:00:01

ReentrantLock(6) 9,973,504 01:14:32 00:01:06 1,940,134 00:14:10 00:00:20

ConcurrentHashMap(11) 1,054,651 00:12:12 00:00:12 753,727 00:05:47 00:00:08

ConcurrentHashMap(12) 4,640,047 00:58:22 00:00:50 3,153,398 00:27:10 00:00:25

AtomicInteger(11) 897,075 00:06:23 00:00:07 753,727 00:05:14 00:00:11

AtomicInteger(12) 3,747,851 00:30:21 00:00:38 3,153,398 00:25:34 00:00:24

new transitions, and that can increase the verification time. The
smallest speedup has been obtained for AtomicInteger,
CAS operations are by definition atomic, therefore, moving
implementation to native methods did not affect the state space
significantly. Due to the exponential increase in test time we
were not able to obtain results for a number of threads higher
than 6 and 12. Despite this fact, even for small numbers of
threads we can see a trend where speedup grows with the
number of threads.

In all cases memory consumption has been a little bit
smaller for code run under jpf-concurrent. We attribute this
to simplification of data structures that are used on host
VM level. Since the difference has been almost negligible,
memory usage is not included in the Table I. When used with
ObjectRemovalListener, our method can produce a
significant memory overhead. In the presence of backtracking
objects that has been garbage collected on one execution path
might be still used on the others. To handle such a situation we
need to keep additional information regarding execution paths
and monitored objects which results in increased memory us-
age. Said that, to this point we have not encountered a real life
example that would require ObjectRemovalListener.

One publicly known case where jpf-concurrent has been
used to help verify large NASA applications is [9], but
there motivation is support for unimplemented native methods,
rather than improved performance.

VI. CONCLUSIONS

In this paper we proposed a new technique to model
Java Concurrency Utilities within JPF. We implemented an
extension to JPF called jpf-concurrent which is based on the
proposed approach. Our approach not only reduces the state
space of the program but also provides support for native
calls within the Java Concurrency Utilities that have not been
supported in the JPF core project.

Using a set of benchmarks, we have shown that in all
cases jpf-concurrent provides a speedup for different types of
classes included in Java Concurrency Utilities. At the time of
writing this paper the jpf-concurrent project has been actively
developed for more than three years, and it is considered one
of the most popular extensions of the JPF model checker.

In the future we plan to extend jpf-concurrent to support all
classes included in the Java Concurrency Utilities, including

new constructs that have been introduced within Java 6 and 7.
Another future direction includes supporting operations that
rely on time. At this point JPF uses system time which in
the presence of backtracking is no longer valid and can lead
to bugs that are extremely hard to debug. We also think that
researching new methods used for state matching within jpf-
concurrent can lead to a significant reduction of the verification
time and should be considered in the future.

ACKNOWLEDGEMENT

The authors would like to thank Dave Parker, Franck
van Breugel and anonymous reviewers for their invaluable
comments. A special acknowledgement goes to Peter Mehlitz
for his constant support during whole development of jpf-
concurrent. In 2008 and 2011 development of this project has
been funded by Google as a part of Google Summer of Code
program.

REFERENCES

[1] Cyrille Artho, Watcharin Leungwattanakit, Masami Hagiya, and Yoshi-
nori Tanabe. Efficient model checking of networked applications. In
Objects, Components, Models and Patterns, volume 11 of Lecture Notes
in Business Information Processing. 2008.

[2] Cyrille Artho, Watcharin Leungwattanakit, Masami Hagiya, Yoshinori
Tanabe, and Mitsuharu Yamamoto. Cache-based model checking of
networked applications: From linear to branching time. In Proceedings
of the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ASE ’09, pages 447–458, Washington, DC, USA, 2009.
IEEE Computer Society.

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, New York, 2008.

[4] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[5] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes,
and Doug Lea. Java Concurrency in Practice. Addison-Wesley
Professional, 2006.

[6] Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):123–149, January 1991.

[7] Doug Lea. Concurrent Programming in Java, 2nd edition. Addison-
Wesley, 2000.

[8] Jeremy Manson, William Pugh, and Sarita Adve. The Java memory
model. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 378–391, Chicago, IL,
USA, June 2005. ACM.

[9] Peter Mehlitz, Oksana Tkachuk, and Mateusz Ujma. Jpf-awt: Model
checking gui applications. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, 2011.

[10] Willem Visser, Klaus Havelund, Guillaume Brat, Seung Joon Park,
and Flavio Lerda. Model Checking Programs. Automated Software
Engineering, 10(2):203–232, 2003.

